

1

SMART CONTRACT
CODE REVIEW AND
SECURITY ANALYSIS
REPORT

For

ORBIT HUMAN CARE (OHC)

https://www.secureverse.in/

2

Table of Contents

1. Disclaimer.. 1

2. Executive Summary ... 2

3. Types of Severities .. 3

4. Types of Issues ... 3

5. Checked Vulnerabilities ... 4

6. Methods ... 4

7. Findings ... 5

1) High Severity Issues: ... 5

2) Medium Severity Issues: .. 9

3) Low Severity Issues: .. 12

4) Informational Issues .. 15

5) Gas Optimization... 16

8. Closing Summary ... 19

9. About Secureverse ... 20

https://www.secureverse.in/

1

 Disclaimer

The Secureverse team examined this smart contract in accordance with industry

best practices. We made every effort to secure the code and provide this report.
audits done by smart contract auditors and automated algorithms; however, it is
crucial to remember that you should not rely entirely on this report. The smart

contract may have flaws that allow for hacking. As a result, the audit cannot
ensure the explicit security of the audited smart contracts. The Secureverse and

its audit report do not encourage readers to consider them as providing any
project-related financial or legal advice.

https://www.secureverse.in/

2

Executive Summary

Project Name Orbit Human Care (OCH)

Project Type RWA, Vesting

Audit Scope Check security and code quality

Audit Method Manual

Code Version V1 V1.1 V1.2

Audit
Timeline

3-April-2024 to
13-April-2024

24-April-2024 to
26-April-2024

27-April-2024

Source Code

Vesting (VC) Vesting (VC) Vesting (VC)

Vesting Proposal Vesting Proposal Vesting Proposal

Vesting Marketing Vesting Marketing Vesting Marketing

Issue Tracking Table

 High Medium Low Informational
Gas

Optimization

Open Issues - - - - -

Acknowledged
Issues - 3 4 3 5

Resolved Issues 2 1 1 - -

70

75

80

85

Compiler
Check

Software
Analysis

Manual
Analysis

Interface
Saftey

Security Score

Score Out of 100

High, 2

Medium,
4

Low, 5

Informati
onal, 3

Gas Opt.,
5

Finding Summary

High Medium Low Informational Gas Opt.

https://www.secureverse.in/
https://testnet.bscscan.com/address/0x3cb844fd392497e57341f1187c9a56926ff69a56#code
https://testnet.bscscan.com/address/0x54ddb0827c02e4c5ed0a4168e012b0cf41ddead9#code
https://testnet.bscscan.com/address/0xcf554789eae466628724f7752270981db6210f2f#code
https://testnet.bscscan.com/address/0xfce161e7668b1fa8880b5949b4a3c16dff92e827#code
https://testnet.bscscan.com/address/0x2814075121babe798f24c0c6c9de75b9c8929434#code
https://testnet.bscscan.com/address/0xfce161e7668b1fa8880b5949b4a3c16dff92e827#code
https://testnet.bscscan.com/address/0x8f988935eb7b096b4c0e7f5cd66701aaca8d5b95#code
https://testnet.bscscan.com/address/0xb65eaf0843013fd4f42fa37701490f79cd027e18#code
https://testnet.bscscan.com/address/0x5f3a89d98a49489a99d9e9e2dc5073f535d2ea80#code

3

Types of Severities

• High: The issue puts a large number of users’ sensitive information at risk, or is

reasonably likely to lead to catastrophic impact for client’s reputation or serious
financial implications for client and users.

• Medium: The issue puts a subset of users’ sensitive information at risk, would be

detrimental for the client’s reputation if exploited, or is reasonably likely to lead to
moderate financial impact.

• Low: The risk is relatively small and could not be exploited on a recurring basis, or

is a risk that the client has indicated is low-impact in view of the client’s business
circumstances.

• Informational: The issue does not pose an immediate risk, but is relevant to

security best practices or Defense in Depth.

• Gas Optimization: The issue also does not pose an immediate risk, but it is the

process to making smart contracts more efficient, cost-effective, to enhance scalability
and better user experience.

Types of Issues

• Open: Security vulnerabilities identified that must be resolved and are currently

unresolved.

• Acknowledged: The way in which it is being used in the project makes it

unnecessary to address the vulnerabilities. This means that the way it has been
acknowledged has no effect on its security.

• Resolved: These are the issues identified in the initial audit and have been

successfully fixed.

https://www.secureverse.in/

4

Checked Vulnerabilities

❖ Re-entrancy

❖ Access control

❖ Denial of service

❖ Integer overflow/Underflow

❖ Transaction Order
Dependency

❖ Requirement Violation

❖ Functions Visibility Check

❖ Mathematical calculations

❖ Dangerous strict equalities

❖ Unchecked Return values

❖ Hard coded information

❖ Malicious libraries

❖ Gas Consumption

❖ Incorrect Inheritance Order

❖ Centralization

❖ Unsafe external calls

❖ Business logic and
specification

❖ Input validation

❖ Incorrect Modifier

❖ Missing events

❖ Assembly usage

❖ Improper or missing events

❖ Token handling

https://www.secureverse.in/

4

Methods

Audit at Secureverse is performed by the experts and they make sure that
audited project must comply with the industry security standards.

Secureverse audit methodology includes following key:

• In depth review of the white paper

• In depth analysis of project and code documentation.

• Checking the industry standards used in Code/Project.

• Checking and understanding Core Functionality of the Code.

• Comparing the code with documentation.
• Manual analysis of the code.

• Gas Optimization and Function Testing.

• Verification of the overall audit.

• Report writing.

The following techniques, methods and tools were used to review all the smart contracts.

Manual Analysis
Manual analysis is done by our smart contract auditors’ team by performing in depth
analysis of the smart contract and identify potential vulnerabilities. Auditor also review
and verify all the static analysis results to prevent the false positives identified by

automated tools.

Gas Consumption and Function Testing
Function testing done by auditors by manually writing customized test cases for the smart
contract to verify the intended behavior as per code and documentation. Gas Optimization
done by reviews potential gas consumption by contract in production.

https://www.secureverse.in/

5

Findings
High Severity Issues:

[H-01] Incorrect vesting calculation in calculateReleaseToken()

Reference:
1) Vesting(VC)#L57

2) Vesting_Marketing#L57

Description:
The calculateReleaseToken() within the OCH_VESTING_MARKETING contract is

responsible for determining the amount of tokens eligible to vest when a user calls the

claim() function. However, the function returns an incorrect amount of vested

tokens.

function calculateReleaseToken() public view returns(uint256){

 uint256 returnAmount;

 if(OCH.balanceOf(address(this)) > 0){

 uint256 time = block.timestamp - lastTimeClaimed;

 uint256 perSecPercent

=((OCH.balanceOf(address(this))*percentRelase)/100)/(120); // 60*60*24*30

 returnAmount += (time * perSecPercent);

 }

 return returnAmount;

 }

 function claim() public onlyOwner{

 require(block.timestamp >= lastTimeClaimed + 120 ," Claiming before 30

days"); // 60*60*24*30

 uint256 avaiableAmount = calculateReleaseToken();

 require(avaiableAmount <= OCH.balanceOf(address(this)) ,"insufficient

Contract Balanace");

 OCH.transfer(msg.sender,avaiableAmount);

 lastTimeClaimed = block.timestamp;

 }

This function computes the token release rate per second based on the contract's

balance, obtained through the balanceOf(address(this)). However, the calculation

method employed is flawed. Furthermore, it fails to adjust the release rate based on

the remaining token balance after each claim, resulting in inaccurate token vesting

calculations.

https://www.secureverse.in/

6

Proof of Concept:
This contract implements a vesting mechanism where tokens are gradually

released over time. The intended behavior is that a certain percentage of tokens should

be released every few minutes until the entire vesting period is complete.

For example, in this case, the vesting period is set to release 10% of the total

token supply every 2 minutes, with the expectation that 100% of the tokens will

be released after 20 minutes.

The issue arises in how the contract calculates the number of tokens to release. The

contract mistakenly adjusts the release amount based on the remaining balance of

tokens after each claim, rather than consistently releasing the intended percentage of

tokens over time.

For example, let's say the initial token balance is 1,000,000 tokens. According to the

vesting schedule, 10% of this balance (100,000 tokens) should be released every 2

minutes. However, due to the incorrect calculation, the contract calculates the release

amount based on the remaining balance after each claim.

After the first claim, 100,000 tokens are released correctly. However, the remaining

balance is now 900,000 tokens. Instead of continuing to release 10% of the initial

balance (100,000 tokens) every 2 minutes, the contract incorrectly calculates 10% of

the remaining balance (90,000 tokens) for the next release.

This results in a decreasing release rate over time, as the contract continues to base

its calculations on the diminishing balance after each claim. As a result, the contract

fails to release the full 100% of the tokens within the expected vesting period of 20

minutes.

Recommendation:
Calculate the perSecPercent value once and then utilize it consistently for all

subsequent vesting periods thereafter. Can be calculated in SetStartingPoint().

Status: Resolved

Vesting(VC) resolved in V1.2

Intended for Vesting_Marketing

https://www.secureverse.in/

7

[H-01-v1.1] Token can stuck forever

Reference:
1) Vesting(VC)V1.1#L69-L124

Description:
The [H-01] issue has been partially resolved in the v1.1 code but now this leads to
another vulnerability. calculateReleaseToken() is now calculateReturn() with

updated code.

Now, if a user forgets to claim their vested tokens for any particular vesting round, the

tokens allocated for that round will remain stuck in the contract indefinitely. Which
is impossible to recover, even by the contract owner.

In calculateReturn() vesting schedule is set to occur every quarter, starting six. A

fixed months after the fund allotment percentage of tokens is vested in each round,
hardcoded into the contract. If a user fails to claim their tokens for a specific vesting

round within the allocated time frame, the tokens allocated for that round become
permanently stuck in the contract.

For instance, let's say user has claimed their token for first 3 round (i.e., 1 year), but
misses claiming their 5% vested tokens during the 4th vesting round, which

corresponds to a year after the fund allotment. Without a way to deal with tokens that
haven't been claimed, they stay stuck in the contract forever. Nobody, even the owner

of the contract, can get these tokens back. This means that the tokens are lost forever,
even though they belong to the users. If users forget to claim their tokens, they end
up being lost in the contract, and there's no way to get them back.

Recommendation:
Two possible solutions:

1) Implement a mechanism that enables the contract owner to recover unclaimed

tokens after a specified period. Such a mechanism would allow the contract owner

to retrieve the unclaimed tokens and redistribute them accordingly, ensuring that

no tokens remain permanently stuck within the contract.

2) Code shared on GitHub. In this code new vesting strategy implemented by which

user can claim and receive all the rewards that they are eligible. Tokens will not

remain in contract anymore. Code Link

Status: Resolved

https://www.secureverse.in/
https://gist.github.com/Secureverse/0eda835be23d27602a72f18e35897564

8

[H-02] Different time intervals can cause tokens to get stuck
permanently

Reference:
1) Vesting(VC)#L51-L69

2) Vesting_Maketing# L51-L69

Description:
The calculateReleaseToken() uses a time interval of 120 seconds (2 minutes) to

calculate perSecPercent. However, the claim() contains an assertion that checks

if the current timestamp is at least 30 days (25,920,000 seconds) after the last time
claimed. This difference in time intervals results in the claim() always reverting, as

it's unlikely for the current timestamp to be 30 days after the last time claimed within

a 2-minute interval.

function calculateReleaseToken() public view returns(uint256){

 uint256 returnAmount;

 if(OCH.balanceOf(address(this)) > 0){

 uint256 time = block.timestamp - lastTimeClaimed;

 uint256 perSecPercent

=((OCH.balanceOf(address(this))*percentRelase)/100)/(120); // 60*60*24*30

 returnAmount += (time * perSecPercent);

 }

 return returnAmount;

 }

 function claim(address user) public onlyOwner{

 require(block.timestamp >= lastTimeClaimed + 60*60*24*30 ," Claiming

before 30 days"); // 60*60*24*30

 uint256 avaiableAmount = calculateReleaseToken();

 require(avaiableAmount <= OCH.balanceOf(address(this)) ,"insufficient

Contract Balanace");

 OCH.transfer(user,avaiableAmount);

 lastTimeClaimed = block.timestamp;

 }

Recommendation:
Adjust the time interval used in the claim() to match the 2-minute interval used in

the calculateReleaseToken(). Or modify the calculateReleaseToken() to use a time

interval consistent with the 30-day requirement in the claim().

Status: Resolved in V1.2

https://www.secureverse.in/

9

Medium Severity Issues:

[M-01] No checks on multisigner duplicates

Reference: Vesting_Proposal#L102-L106

Description:
OCH_VESTING_PROPOSAL contract lacks validation checks to prevent the addition of

duplicate signers in the multisigner list. This allows the owner to add the same signer

multiple times.

Recommendation:
Implement a check in the addSigner() to ensure that the signer address being added

does not already exist in the multisigner list.

function addSigner(address signer) public onlyOwner {

 require(signer != address(0), "Invalid User Address");

 require(!isSigner(signer), "Signer already exists"); // Add this validation

 require(multisigner.length <= 10, "Limit Reached!! Cannot assign more signers");

 multisigner.push(signer);

}

function _isSigner(address signer) internal view returns (bool) {

 for (uint256 i; i < multisigner.length; ++i) {

 if (multisigner[i] == signer) {

 return true;

 }

 }

 return false;

}

Status: Resolved in V1.1

https://www.secureverse.in/

10

[M-02] Centralization risk

Description:
The current setup of the project grants extensive authority to the owner role, allowing
them to control critical functions that influence the core functionality of the system.

If the owner account were to be compromised, it could lead to severe vulnerabilities
and potential exploitation. Below functions are handled by onlyOwner:

➢ Vesting_Proposal

o setTokenAddress()

o makeProposal()

o claimfund()

o discardRunningProposal()

o addSigner()

o changeOwner()

➢ Vesting_Marketing
o SetStartingPoint()

o claim()

o changeTokenAdress()

o changeOwner()

➢ Vesting(VC)
o SetStartingPoint()

o claim()

o changeOwner()

Recommendation:
Explore the implementation of a TimeLock contract as the protocol owner, enabling
users to oversee and understand proposed changes before they are executed.
Alternatively, consider transferring the admin role to a governance-controlled address,

promoting community involvement and transparency in decision-making processes.

Status: Acknowledged

https://www.secureverse.in/

11

[M-03] Missing Functionality to Update and Remove Signers

Reference: Vesting_Proposal

Description:
OCH_VESTING_PROPOSAL contract lacks functionality to remove signers once they have

been added. After deployment the contract does not provide any means to update or
remove the signers. This functionality becomes important when some signer behaves

malicious or they lost control of their wallet in event of security breach.

Recommendation:
Consider adding function to allow authorized addresses to update or remove Signers.

Status: Acknowledged

[M-04] Return value of transfer is not checked

Reference:
1) Vesting_Marketing#L66
2) Vesting(VC)#L66

Description:
In Solidity, when you call the transfer method of an ERC20 token, it should return a

Boolean value indicating success or failure. However, the claim() of

OCH_VESTING_MARKETING contract assumes that this transfer will always succeed

and does not check the return value. By not checking the return value, the contract
assumes the transfer will never fail, which is not safe. If the transfer does fail (due to
a lack of balance, token contract issues, or other reasons), the claim function would

still execute and set lastTimeClaimed to the current timestamp, potentially leading

to a loss of funds or incorrect vesting state without any indication of the failure.

Recommendation:
It is good to add a require() statement that checks the return value of token transfers

or to use OpenZeppelin’s safeTransfer/safeTransferFrom unless one is sure the

given token reverts in case of a failure. Failure to do so will cause silent failures of
transfers and affect token accounting in contract.

Status: Acknowledged

https://www.secureverse.in/

12

Low Severity Issues:

[L-01] changeOwner() should be 2-step process

Reference:
1) Vesting_Proposal#L112
2) Vesting_Marketing#L74
3) Vesting(VC)#L72

Description:
Lack of two-step procedure for critical operations (like change owner address) leaves

them error-prone.

Recommendation:
Implement a two-step owner changing process:

1. The existing owner nominates a new owner using the setOwner()

2. The new owner accepts the nomination using an acceptOwnerNomination().

3. After accepting the nomination, the candidate becomes an owner.

struct OwnerCandidate {

 bool exists;

 bool accepted;

}

mapping(address => OwnerCandidate) private ownerCandidates;

mapping(address => bool) public owners;

function changeOwner(address _newOwner) public onlyOwner {

 if (_newOwner == address(0)) revert Errors.ZeroAddress();

 ownerCandidates[_newOwner].exists = true;

 ownerCandidates[_newOwner].accepted = false;

 emit Events.AdminNominated(_newOwner);

}

function acceptOwnerNomination() public {

 require(adminCandidates[msg.sender].exists, "No admin nomination found for this

address");

 require(!adminCandidates[msg.sender].accepted, "You have already accepted admin

nomination");

 adminCandidates[msg.sender].accepted = true;

 admins[msg.sender] = true;

 emit Events.NewOwnerAdded(msg.sender);

}

Status: Acknowledged

https://www.secureverse.in/

13

[L-02] Missing zero-address and values check in constructors and
the setter functions

Reference:
1) Vesting_Proposal#L43, L50, L54, L83, L112
2) Vesting_Marketing#L39, L44, L62, L71, L74
3) Vesting(VC)# L39, L44, L72

Description:
Missing checks for zero-addresses and zero value may lead to unfunctional protocol,
if the variable addresses and values are updated incorrectly.

It's noted that all setter functions in the contract utilize the onlyOwner modifier,

ensuring they can only be called by authorized individuals. However, there exists a

potential vulnerability where an owner might inadvertently add address(0). To

enhance security, it's advisable to include a check for the zero address and values
before assigning addresses and values.

Recommendation:
Consider adding zero-address and values checks in the constructors and setter

functions. For zero-address the recommended approach outlined in issue [G-07] can
be utilized.

Status: Acknowledged

[L-03] Missing event for critical functions

Reference:
1) Vesting_Proposal
2) Vesting_Marketing
3) Vesting(VC)

Description:
Functions that change critical contract parameters/addresses/state should emit

events so that users and other privileged roles can detect upcoming changes (by off-
chain monitoring of events). Here any of the functions are not emitting any events.

Status: Acknowledged

https://www.secureverse.in/

14

[L-04] No check for contract balance before making proposal and
claiming funds.

Reference:
1) Vesting_Proposal#L54-L62

2) Vesting_Proposal#L83-L93

Description:
The makeProposal() allows the owner to create a new proposal to withdraw a

specified amount of tokens without verifying if the contract has a sufficient balance of

tokens to cover the withdrawal amount. Same thing happens with claimfund() as

well which is not checking contract balance before transfer funds.

Due to this, a proposal can be created for more tokens than the contract actually

holds. If it approved, the claimfund() could fail when attempting to transfer more

tokens than available, leading to a locked state. Moreover, users may vote on and

approve a proposal that cannot be executed, wasting resources.

Recommendation:
Check the contract's token balance before setting the withdrawal amount in

makeProposal() and before transferring tokens in claimfund().

Status: Resolved in 1.2

[L-05] Lack of pause/unpause functionality

Description:
The contract lacks upgradeability and pause functionality, which means that if a

critical bug or security vulnerability is discovered, there is no way to halt operations

or apply a fix without deploying a new contract and migrating the state and funds.

Due to this there will be inability to respond quickly to discovered vulnerabilities,

potentially leading to loss of funds or other critical issues. And no way to stop

potential malicious activity or accidental transactions during an emergency.

Recommendation:
Use Openzeppelin’s pausable library.

Status: Acknowledged

https://www.secureverse.in/

15

Informational Issues

[NC-01] Avoid hardcoding values

Reference:
1) Vesting_Proposal#L46, L84, L103

2) Vesting_Marketing#L57, L63

3) Vesting(VC)#L57, L63

Recommendation:
Avoid hardcoding values; instead, use variables to facilitate future changes or

constant variables if no changes are planned.

Status: Acknowledged

[NC-02] Remove Unused/Commented code

Reference: Vesting_Proposal#L108-L110

Status: Acknowledged

[NC-03] Lack of Comments and Documentation

Description:
The contract code provided lacks comments and documentation, which are essential
for understanding the purpose, functionality, and expected behavior of functions

within the contract. It will cause poor maintainability, as future updates or
modifications may unintentionally break functionality due to a lack of understanding
of the original code's intent.

Recommendation:
Add NatSpec comments to all functions, describing their purpose, parameters, return
values, and any side effects or requirements.

Status: Acknowledged

https://www.secureverse.in/

16

Gas Optimization

[G-01] Unnecessary incrementing values

Reference:
1) Vesting_Marketing#L58
2) Vesting(VC)#L58

Description:
In the calculateReleaseToken(), the variable returnAmount is initialized to zero

and is only assigned a value once within the function.

returnAmount += (time * perSecPercent);

Since returnAmount is initialized to zero at the start of the function and not modified
anywhere else before this line, the += operator is unnecessary.

Recommendation:
Replace += with =

returnAmount = (time * perSecPercent);

Status: Acknowledged

[G-02] Should not perform a lookup for <array>.length within

each iteration of a for-loop

Reference:
1) Vesting_Proposal#L66
2) Vesting_Proposal#L72

Recommendation:
Optimizing the loop by storing the array's length in a variable before entering it can
significantly reduce gas consumption. In scenarios where the length is fetched from
memory, this approach can save approximately 3 gas per iteration. Thus, it's

recommended to cache the array's length in a variable and use this variable within
the loop for better efficiency.

Status: Acknowledged

https://www.secureverse.in/

17

[G-03] Use the constant keyword for unchanging variables

Reference: Vesting_Proposal#L94-L100

Description:
The discardRunningProposal() can be executed regardless of whether a proposal is

currently active. This means that the owner can call this function at any time, even if

there is no proposal to discard, leading to unnecessary gas consumption and state
changes that do not reflect any meaningful action.

Recommendation:
Add a check to ensure that there is an active proposal before allowing the state to be

reset:

require(isProposalActive, "No active proposal to discard");

Status: Acknowledged

[G-04] Unnecessary checks and operations that could be optimized

Reference: Vesting_Proposal#L64-L81

Description:
1) The voteForProposal() uses a linear search to check if msg.sender has already

voted, which is inefficient for large arrays.

if (msg.sender == VotedForProposal[i])

2) Another linear search is used to check if msg.sender is in the multisigner[],

which is also inefficient and could be costly in terms of gas if the array grows

large.

if (msg.sender == multisigner[i]) {

Recommendation:
1) Replace the array for VotedForProposal with a mapping to track whether an address

has voted, allowing for constant-time lookups.

mapping(address => uint256) public hasVoted;

2) Use a mapping for multisigner to quickly verify if an address is authorized to vote,

avoiding the need for a loop.

mapping(address => uint256) public isMultisigner;

Note: uint256 is recommended instead of bool. 0 and 1 will be more gas efficient

instead of true and false

Status: Acknowledged

https://www.secureverse.in/

18

[G-05] Avoid initializing variables to default values

Reference:
1) Vesting_Proposal#L66, L72

Description:
Explicitly initializing a variable with its default value, such as 0 for uint, false for

bool, or address(0) for address when it's not set/initialized, is considered an anti-

pattern and results in unnecessary gas consumption.

Status: Acknowledged

https://www.secureverse.in/

19

Closing Summary

In this audit, we examined the NFTFN’s smart contract with our framework, and we

discovered several High, Medium, Low, Informational and Gas Optimizations flaws in
the smart contract. We have included solutions and recommendations in the audit

report to improve the quality and security posture of the code. All of the findings and
solutions have been acknowledged by the project team. In summary, we find that the
codebase with the latest version greatly improved on the initial version. We believe

that the overall level of security provided by the codebase in its current state is

reasonable, so we have marked it as Secure and the customer's smart contract has

the following score: 9

1 2 3 4 5 6 7 8 9 10

https://www.secureverse.in/

20

About Secureverse

Secureverse is the Singapore and India based emerging Web3 Security solution

provider. We at Secureverse provides the Smart Contract audit, Blockchain
infrastructure Penetration testing and the Cryptocurrency forensic services with very

affordable prices.

To Know More

Twitter: https://twitter.com/secureverse

LinkedIn: https://www.linkedin.com/company/secureverse/

Telegram: https://t.me/secureverse

Email Address: secureverse@protonmail.com

https://www.secureverse.in/
https://twitter.com/secureverse
https://www.linkedin.com/company/secureverse/
https://t.me/secureverse
mailto:secureverse@protonmail.com/

